Author: 陈江(恬泰)
本文在不讨论查询变换的情况下,我们我们将逐一介绍上述子查询原生的执行方式,本文注重归纳总结,理解思想的情况下,看源码简单多了。
例子如下,可以出现在投影, where condition, join condition, project list里面。
desc format=tree select * from t2 where a > (select max(a) from t1);
| -> Filter: (t2.a > (select #2)) (cost=0.35 rows=1)
-> Table scan on t2 (cost=0.35 rows=2)
-> Select #2 (subquery in condition; run only once)
-> Aggregate: max(t1.a)
-> Table scan on t1 (cost=0.35 rows=1)
由plan可以以看到left expr+子查询被解释成为了一个filter predict(t2.a > (select #2))。在mysql 内存中的对象为:
$m0 (Item_func_gt *) 0x7ff5abdc82b0
|--$m1 (Item_field *) 0x7ff5ac240c28 field = test.t2.a
`--$m2 (Item_singlerow_subselect *) 0x7ff5abdc80d0
先对select #2进行求值,本例子是max(t1.a)算子求值,存储到Item_singlerow_subselect一个cache里面,run only once嘛,只需求值一次。 对外层t2表进行scan,拿到每一行,应用Item_func_gt 算子,判断t2.a > Item_singlerow_subselect->val_int(),实际调用的是t2.a > Item_cache_int->value. Item_cache_int 就是步骤1的求值。
场景:exists表达式是一个bool求值,允许出现bool值的地方都可以出现该子查询
例子:
set @@optimizer_switch='materialization=off,semijoin=off';
desc format=tree select * from t2 where exists (select 1 from t3 where t2.a=t3.a);
| -> Filter: exists(select #2) (cost=0.45 rows=2)
-> Table scan on t2 (cost=0.45 rows=2)
-> Select #2 (subquery in condition; dependent)
-> Limit: 1 row(s)
-> Filter: (t2.a = t3.a) (cost=0.35 rows=1)
-> Table scan on t3 (cost=0.35 rows=2)
注意:这个sql会做semi-join转换,需要关闭semi join就能出exist计划
(gdb) p $ac1->m_where_cond
$45 = (Item_exists_subselect *) 0x7ff5aabc1478
where_cond直接就是Item_exists_subselect,没有left expr。Item_exists_subselect负责求值
上面介绍的两种子查询优化执行都比较简单,下面我们介绍一下mysql是怎么处理in子查询的, 这个会比较复杂。in子查询有些开关,可以做查询变换,这节里面我们不展开讨论,只专注于原生执行方式
这基本上是子查询里面最复杂的了
场景:in子查询本质上也是一个bool函数求值,允许bool值的地方都允许IN子查询,所以可以出现在where_cond,
join条件,having条件,投用列里面。
例子:
desc format=tree select * from t2 where t2.a in (select sum(a) from t3 group by b);
| -> Filter: <in_optimizer>(t2.a,<exists>(select #2)) (cost=0.45 rows=2)
-> Table scan on t2 (cost=0.45 rows=2)
-> Select #2 (subquery in condition; dependent)
-> Limit: 1 row(s)
-> Filter: (<cache>(t2.a) = <ref_null_helper>(sum(t3.a)))
-> Table scan on <temporary>
-> Aggregate using temporary table
-> Table scan on t3 (cost=0.45 rows=2)
==>
select t2.a AS a, t2.b AS b
from t2
where < in_optimizer >(
t2.a,
< exists >(
/* select#2 */
select 1
from t3
group by t3.b
having (< cache >(t2.a) = < ref_null_helper >(sum(t3.a)))
)
)
执行时会被替换为Item_in_optimizer,重要的数据结构就是左右两个孩子
$ai0 (Item_in_optimizer *) 0x7ff5aaaad7e0
|--$ai1 (Item_field *) 0x7ff5ac240de8 field = test.t2.a
`--$ai2 (Item_in_subselect *) 0x7ff5ac23fdb8
(gdb) my e optimizer->args[0]
$aj0 (Item_field *) 0x7ff5ac240de8 field = test.t2.a
(gdb) my e optimizer->args[1]
$ak0 (Item_in_subselect *) 0x7ff5ac23fdb8
(gdb) p optimizer->arg_count
$56 = 2
可能有同学会奇怪为啥要添加< ref_null_helper >算子或者in子查询替换为Item_in_optimizer。exists跟in子查询语义是不一样的,exists是bool语义,返回(0,1)IN可以返回NULL的,结果可以是(0,1, NULL)。这点在子查询Unnest里面要尤为注意,请查阅下列例子
mysql> select null in (0);
+-------------+
| null in (0) |
+-------------+
| NULL |
+-------------+
1 row in set (0.00 sec)
mysql> select exists (select 1 from dual where NULL = 1);
+--------------------------------------------+
| exists (select 1 from dual where NULL = 1) |
+--------------------------------------------+
| 0 |
+--------------------------------------------+
从执行计划树可以看到有个filter算子,其实就是Item_in_optimizer::val_int求值, Item_in_optimizer算子右child就是替换好的exists子查询,代入当前的t2.a作为,进行exists子查询求值,能得到bool值,从而知晓过滤与否
如果子查询t3在相关列a列有索引,正好可以使用ref access,Item_in_subselect在optimize阶段会创建subselect_indexsubquery_engine,然后子查询求值,只需要在子查询的单表进行索引查找即可。
限定条件:
outer_expr IN (SELECT tbl.key FROM tbl WHERE subq_where)
复现case:
mysql> alter table t3 add index idx_a(a);
mysql> desc select * from t2 where t2.a in (select a from t3);
+----+--------------------+-------+------------+----------------+---------------+-------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------------+-------+------------+----------------+---------------+-------+---------+------+------+----------+-------------+
| 1 | PRIMARY | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 2 | 100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | t3 | NULL | index_subquery | idx_a | idx_a | 5 | func | 1 | 100.00 | Using index |
+----+--------------------+-------+------------+----------------+---------------+-------+---------+------+------+----------+-------------+
执行期执行栈
#0 RefIterator<false>::Read (this=0x7ff5aabc2ac8)
#1 0x0000000009876fc6 in LimitOffsetIterator::Read (this=0x7ff5aabc2ba0)
#2 0x0000000009726579 in ExecuteExistsQuery (thd=0x7ff5ad009180, unit=0x7ff5ac2409c8, iterator=0x7ff5aabc2ba0, found=0x7ff60d1b0237)
#3 0x0000000009726688 in subselect_indexsubquery_engine::exec (this=0x7ff5aabc2a90, thd=0x7ff5ad009180)
#4 0x000000000971b614 in Item_subselect::exec (this=0x7ff5ac23f828, thd=0x7ff5ad009180)
#5 0x000000000971ba94 in Item_in_subselect::exec (this=0x7ff5ac23f828, thd=0x7ff5ad009180)
#6 0x000000000971f85f in Item_in_subselect::val_bool_naked (this=0x7ff5ac23f828)
#7 0x00000000094c9bf6 in Item_in_optimizer::val_int (this=0x7ff5aab18fd0)
#8 0x000000000987669e in FilterIterator::Read (this=0x7ff5aab1a898)
上文提到过,IN子查询默认执行方式有两种,上章节介绍了exists,下面就是物化执行的plan。子查询一定是非相关的,先添加索引物化成临时表,然后在执行in算子,在物化表里面进行索引查找
set @@optimizer_switch='subquery_materialization_cost_based=off';
set @@optimizer_switch='semijoin=off';
desc format=tree select * from t2 where t2.a in (select a from t3);
-> Filter: <in_optimizer>(t2.a,t2.a in (select #2)) (cost=0.45 rows=2)
-> Table scan on t2 (cost=0.45 rows=2)
-> Select #2 (subquery in condition; run only once)
-> Filter: ((t2.a = `<materialized_subquery>`.a))
-> Limit: 1 row(s)
-> Index lookup on <materialized_subquery> using <auto_distinct_key> (a=t2.a)
-> Materialize with deduplication
-> Index scan on t3 using idx_a (cost=0.45 rows=2)
select * from t2 where t2.a > all(select a from t3);
==>强行改写成Item_maxmin_subselect
select * from t2
where
< not >(
(t2.a <= < max >(
/* select#2 */
select t3.a
from t3
))
)
Item_allany_subselect 被替换为Item_maxmin_subselect,Item_allany_subselect是Item_in_subselect的子类,也复用in_subselect诸多逻辑,比如设置strategy = CANDIDATE_FOR_IN2EXISTS_OR_MAT, optimize里面再通过代价决定是物化还是exists执行
外层的where_cond相当于被改写为:
t2.a > max(select a from t3);#max被解析为Item_maxmin_subselect算子
这个执行方式是内层扫描所有t3.a,外部有个max算子求最大值,扫t3全表不可避免。
(gdb) my e $dl1->m_where_cond //$dl1为select#1的指针
$do0 (Item_func_not_all *) 0x7ff5aab18c18
`--$do1 (Item_func_le *) 0x7ff5aab19660
|--$do2 (Item_field *) 0x7ff5ac240768 field = test.t2.a
`--$do3 (Item_maxmin_subselect *) 0x7ff5aab19480
->Item_maxmin_subselect::val_int
->SELECT_LEX_UNIT::ExecuteIteratorQuery
for (;;) {
int error = m_root_iterator->Read();
-->Query_result_max_min_subquery::send_data
---->Query_result_max_min_subquery::cmp_int
---->Item_singlerow_subselect::store
}
本文介绍了mysql 全部的子查询原生的执行方式,下一篇我们将重点介绍mysql子查询解嵌套以及相关的变换,敬请期待。